Innovation in veterinary surgery and post-operative care

Copptech pets

Innovation in veterinary surgery and post-operative care

Elizabethan collars are often recommended by veterinarians, especially to prevent dogs and cats from removing their sutures after surgery. They get their name from the lace collars that were fashionable in the time of Queen Elizabeth I. References to their use in veterinary medicine date back to at least 1897. The first Elizabethan pet collars were made of wood, leather or steel; some sources describe the application of buckets with holes in the bottom on dogs to prevent self-harm. There are variations in design, including features to facilitate diameter adjustments or the addition of padding, to ensure that the collars fulfil their function and/or to improve comfort.

Kimba, a Chilean vet company,has partnered with Copptech to create state-of-the-art post-operative clothing for dogs and cats, with Copptech technology, which keep pets’ injured areas clean and protected while they heal – and even heal faster. In a 2020 study, veterinarians at the University of Sydney in Australia conducted a survey of 434 owners whose pets had used the Elizabeth collar in the past year. It concluded that its use causes stress in pets, reduces, among other things, their field of vision and affects their freedom of movement (Shenoda, 2020).

Kimba, together with Copptech were the pioneers in using technology and progress to improve this ancient invention, so that pets could withstand and heal better – and faster,. The creation is called Body Kimba, that can be used in all types of animals and is now considered a the best veterinary measure in Chileans vet-clinics.

Adolfo Momares, the mind behind Kimba, says “The first thing we did was to determine the inconvenience of the Elizabethan collar and the challenges it poses for those of us who care for our pets. That is why we developed a body, which covers, protects and heals these tissues faster. Customised products based on the needs observed in dogs and cats”. 

The Kimba Body with Copptech technology, provides an antifungal, antimicrobial effect, permanent protection against infections and a visible improvement in wound healing. “With this clothing, the stress on pets is reduced after treatment or surgery. Now, thanks to the post-operative onesie, you can keep the injured areas clean and protected without having to endure the irritating device on the neck known as the “cone of shame”. Explains Veterinarian, Marcelo Jofré.

Innovation and tecnhnology to improve health and wellbeing! Also protecting our pets. Learn more in our Link https://www.copptech.com/pets/

Shenoda, Y., (2020). “The Cone of Shame”: Welfare Implications of Elizabethan Collar Use on Dogs and Cats as Reported by their Owners. Animals, 10(2), 333.

Copptech protected Non woven products – Protecting the healthcare industry

Copptech

Copptech protected Non woven products - Protecting the healthcare industry

Copptech technology incorporates antimicrobial formulations into woven and non-woven textiles, polymers, resins and rubbers, turning them into biocidal products, i.e. they neutralise and prevent the action of any harmful microorganism, such as viruses, bacteria and fungi, with an effectiveness of more than 99.9%. In particular, the development of non-woven fabrics has been beneficial in preventing the proliferation of hospital-acquired infections, as this line includes raw materials used in masks, medical gowns, pillowcases, caps and gurney covers, which are widely used in clinics and hospitals. Moreover, this is the same material used in wound dressings, pads and diapers.

“When the microorganism causing an infection comes into contact with a Copptech non-woven, it short-circuits its cell membrane, creating perforations. This allows the copper ions to enter, stopping the pathogen’s vital functions. Copptech technology helps to create an environment free of potentially pathogenic microorganisms around the skin, and if used as an adjunct in wound treatment, it will also contribute to the healing process,” explains Dr Luis Améstica.

People protection can be promoted through the use of technology and innovation. At Copptech, we firmly believe that health and wellbeing are possible and within our reach. The use of Copptech technology in the area of health would be a concrete and effective way to work towards decreasing the spread of pathogenic microorganisms. E-mail us at info@copptech.com and we will tell you more about our partners who are already leading the way in the use of technology to protect through non-woven materials.

Certified projects and products

copptech

Certified projects and products

We are committed to always achieve the highest level of antimicrobial protection to deliver safety. This is why we certify the efficacy of our products with leading entities, recognised third party laboratories and Universities with science and innovation trayectories, such as the University of Chile and the University of Southampton in the UK.

Copper is the only metal certified by the USA Environmental Protection Agency (EPA) for its antimicrobial properties, and because it does not pollute the environment. And our own Copptech technology already has four EPA registrations, allowing it to be commercialized and guaranteeing its performance.

The efficacy of antimicrobial copper is supported by multiple research studies, one of which was conducted by the US Department of Defense – presented in 2011 in Geneva at the WHO Conference on Infection Prevention. This proved its ability to reduce the risk of infection by more than 40% (Schmidt, 2011).

Copptech has multiple formulations, using different antimicrobial ingredients. We have certifications for all products on the market with our logo. Choosing the Copptech logo is choosing protection, health and wellbeing – all scientifically backed by the highest international standards.

References:

Schmidt, MG. (2011). Copper Touch Surface Initiative Microbiology and Immunology, Medical University of South Carolina, Charleston, USA BMC Proceedings 2011, 5(Suppl 6):O53.

Intrahospital infections

intra hospital infections

Intra-hospital infections

In 2010, about 35.1 million Americans spent at least one night in the hospital (1). The US Centers for Disease Control and Prevention estimates that 5% of hospitalized patients suffer from a hospital-acquired infection. These infections cause about 99,000 deaths each year (2), resulting in a loss of $10 billion each year (3) in public health costs.

While nosocomial infections were brought under control with the advent of penicillin and other antibiotics, concerns about the spread of infections have recently been heightened by the rise of antibiotic-resistant bacteria. Today, antibiotic-resistant infections show no signs of stopping. These infections have been attributed to the presence of harmful bacteria, misuse of antibiotics, infection control procedures and sterility standards. In fact, it has been predicted that by 2050, deaths from antibiotic-resistant bacteria will outnumber deaths from cancer.

Under lights, in equipment, screens, sheets, pillows and on gurneys, live a large number of microbes that have adapted to different environments and conditions, surviving despite cleaning and sanitization. This reality demonstrates the urgency of having technologies to reduce the spread and reproduction of these microbes that cause infections and diseases, which compromise our health and the conditions of hospital environments. At Copptech we have developed different solutions to be applied in hospitals, from textiles, paints, varnishes, plastics and more, to contribute to the decrease of the spread of infections and intra-hospital diseases.

References:

(1)https://www.cdc.gov/nchs/data/nhds/1general/2010gen1_agesexalos.pdf

(2)https://journals.sagepub.com/doi/abs/10.1177/003335490712200205

(3)https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/1733452